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RANKINGS AS ORDINAL SCALE MEASUREMENT RESULTS 
 
 

Rankings (or preference relations, or weak orders) are sometimes considered to be non-empirical, non-
objective, low-informative and, in principle, are not worthy to be titled measurements. A purpose of the paper is 
to demonstrate that the measurement result on the ordinal scale should be an entire (consensus) ranking of n ob-
jects ranked by m properties (or experts, or voters) in order of preference and the ranking is one of points of the 
weak orders space. The consensus relation that would give an integrative characterization of the initial rankings 
is one of strict (linear) order relations, which, in some sense, is nearest to every of the initial rankings. A recur-
sive branch and bound measurement procedure for finding the consensus relation is described. An approach to 
consensus relation uncertainty assessment is discussed. 
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1. INTRODUCTION 
 

Rankings are sometimes considered to be non-empirical, non-objective, low-informative 
and, in principle, are not worthy to be titled measurements [1]. In our opinion, a ranking is a 
result of measurement on the ordinal scale and is useful to the same extent as any ordinal 
measurement.  

There are a lot of ordinal kind scales in the scope of applied metrology. These are, for 
example, scales for mineral hardness, earthquake magnitudes, wind force, smell of water, 
many of scales for different kinds of food quality and many, many others [2]. The point is that 
measurement results obtained in these scales are frequently treated as some number (score, 
rank). For example, when measuring hardness on Mohs scale a mineral sample is assigned a 
number b if it cannot be scratched by standard mineral b, b = 1, …, 10, and cannot scratch it. 
This number is, clearly, only a label and its use in any additive or multiplicative operation is 
meaningless. 

A purpose of the paper is to demonstrate that the measurement result on the ordinal scale 
should be the entire ranking of n objects and the ranking is one of points of the weak orders 
space. In this case there appears a possibility to study a structure of the space, to investigate 
the correlation between rankings and the space cardinality and do many other researches 
yielding useful information about objects under measurement. 

 
 

2. ORDINAL MEASUREMENT TREATMENT 
 
As in [3], in this paper ordinal measurement is treated as finding a consensus ranking for 

given initial rankings. In fact, by m properties, n objects can be ranked in order of preference. 
A single preference relation that would give an integrative characterization of the object prop-
erties is one of strict (linear) order relations, which, in some sense, is nearest to every of the 
initial rankings. Finding the consensus ranking is possible due to introducing a measure of 
distance between pairs of rankings.  

 



2.1. Rankings 
 
Suppose we have m rankings on the same set A = {a1, a2, ..., an} of n objects. Then we 

have the relation set Λ = {λ1,  λ2, ..., λm}, where each of m rankings (preference relations) λ = 
{a1 f a2 f...~ as ~ at f...~ an} may include f, a strict preference relation π, and ~, an equiva-
lence (or indifference) relation ν, so that λ = π ∪ν. Such a relation λ is generally called a 
weak order. Thus, in this paper we will use the terms ranking, preference relation and weak 
order as synonyms. The relation set Λ can be titled a preference profile for the given m ex-
perts. 

For example, let n = 6, m = 5, then we can have four following rankings of alternatives: 
 

 λ1: a1 f a2 f a6 f a4 f a3 ~ a5, 
 λ2: a4 f a5 f a1 f a2 f a3 f a6, 
 λ3: a2 f a5 f a1 f a3 f a4 f a6, (1) 
 λ4: a6 f a3 f a4 f a2 f a1 f a5, 
 λ5: a3 f a4 f a2 f a6 f a5 f a1. 

 
Our aim is to determine a single preference relation that would give an integrative charac-

terization of the alternatives. Let a space Π be a set of all n! linear (strict) order relations f on 
A. Each linear order corresponds to one of permutations of first n natural numbers Nn. We 
will consider a permutation β ∈ Π of the alternatives a1, ..., an to represent the preference pro-
file Λ and will call it consensus ranking. It is desirable that, in some sense, β would be nearest 
to every of the rankings λ1, ..., λm.  

An example of the space of weak orders for n = 4 is shown in Fig. 1, where each node cor-
responds to one weak order. The space has 75 elements of which 24 are linear orders. The lin-
ear orders are shown in Fig. 2. 

 
Fig. 1. Space of weak orders for n = 4. 
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Fig. 2. Subspace Π of linear orders for n = 4. 

 
It is clear that the problem described above is very similar to the problem of voting or 

group decision where A is a set of n alternatives or candidates which are ranked by a group of 
m individuals (voters, experts, focus groups, criteria, etc.).  

The ranking λ can be represented by a (n × n) relation matrix R = [rij] whose rows and col-
umns are labeled by the objects a and 
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The symmetric difference distance function d(λk, λl) between two rankings λk and λl is de-

fined by formula 
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and may be understood as the number of disagreements between two rankings. Here only ele-
ments of the upper triangle submatrix, rij, i < j, of matrix R are summed up. The value of 
d(λ1, λ2) between the first two rankings of our example profile (1) is equal to 0+0+2+2+0+0+ 
+2+2+0+0+1+2+0+2+2 = 15. 

The distance between arbitrary ranking λ and profile Λ can then be defined as follows: 
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From (2), supposing rij = 1 for all i < j that corresponds to the natural linear order a1 f a2 f... 
f an, it is clear that for any k = 1, …, m we have | |k
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We can now define a (n × n) profile matrix P = [pij] where 
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and the number of voters m of the profile Α is present in each of the matrix elements as 
½(pij + pji) = m, i, j = 1, …, n. Thus, the value 0.5pij can be understood as the number of pref-
erences aj over ai. 

For the example profile (1), we have the following profile matrix P: 
 

 

0 6 4 6 6 4
4 0 4 6 2 2
6 6 0 4 5 4[ ] 4 4 6 0 2 4
4 8 5 8 0 6
6 8 6 6 4 0

ijp
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where, for instance, p24 = 0+2+0+2+2 = 6, the number of experts choosing a4 over a2 is 3 and 
the number of experts choosing a2 over a4 is 2. 
 

2.2. Finding consensus ranking 
 

How to find a single preference relation that would give an integrative characterization of 
the preference profile Λ described by matrix P? Condorcet in 1785, see [4], proposed a very 
natural and now well-known procedure of handling the paired-comparison data contained in 
the matrix P: in each comparison, the preferred object is the object preferred by a majority of 
voters, i.e. i ja af  if and only if pij > pji. However, the binary relation defined by Condorcet's 

rule is not necessarily transitive, i.e. it can be that i ja af  and j ka af  while ik aa f . This 
Condorcet's Paradox of Voting may occur rather frequently: its chances are usually even 
greater than 50%. 

Published in 1951 Arrow's Impossibility Theorem [5] has shown that no voting method can 
satisfy the following three desirable (natural) properties (axioms): 
(P1) unanimity (if alternative ai is ranked above aj for all orderings λ1, λ2, ..., λm, then ai is 

ranked higher than aj by β), 
(P2) non-dictatorship (there is no k-th voter whose preferences always prevail), and 
(P3) independence of irrelevant alternatives (for two preference profiles Λ and Λ’ such that 

for all k-th voters alternatives ai and aj have the same order in Λ and Λ’, alternatives ai 
and aj have the same order in β(Λ) and β(Λ’). 

Thus, Arrow's theorem can serve as a thorough justification of Condorcet's paradox which 
means that a preference profile is not necessarily transitive even if each k-th ranking is a 
linear order. 



In this situation, a reasonable way to get over the difficulty is to find such a linear order 
(permutation) β ∈ Π of objects of A that the distance ( , )D β Λ  from β to the profile Λ is 
minimal, that is 
 ( )Λ=

Π∈
,minarg λβ

λ
D . (9) 

 
Thus, a solution of the optimization problem (9) is the consensus linear ranking β that is 

also called median order. Every permutation of objects of A corresponds to transposition of 
the profile matrix rows and columns. Hence, the problem (9) means the determination of such 
a transposition of profile matrix rows and columns that the sum of elements of its upper trian-
gle submatrix is minimal. It should be noticed that the problem may have more than one op-
timal solution. 

The space of solutions for this problem is great and this problem has been proven to be 
NP-hard [6]. However, for reasonable problem sizes (up to n ≈ 50) there are exact algorithms 
for them to be applied, see, for example, [4, 7, 8]. They typically use the branch and bound 
(B&B) technique and, as a rule, are rather sophisticated and not easily realized in program-
ming code. Trying to overcome the demerits, an algorithm has been proposed which is dis-
cussed in Section 3. 

The application of median order as a consensus relation has been justified in [9] using an 
axiomatic characterization of the distance measure d(αk, αl). More profound justification, tak-
ing into account conditions of Arrow's theorem, has been done in [10].  

 
 

3. PROCEDURE FOR CONSENSUS RELATION DETERMINATION 
 
The input of the algorithm will be the profile matrix P = [pij] and the output will be the op-

timal transposition β, and the corresponding upper bound value of the distance function lu = 
D(β, Λ). A transposition of rows and columns of matrix P is to be represented by a permuta-
tion of first n natural numbers Nn = {1, 2, ..., n}. 

The algorithm of determining an optimal transposition of rows and columns of the profile 
matrix uses the recursive B&B technique [11] which turned out to be suitable for the case, and 
works as described below.  

 
3.1. Least distance 

 
Matrix P can be characterized by a least distance Dleast from its preference profile Λ to 

some linear order. A lesser element of each pair (pij, pji) is included into the distance, that is 
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It is clear that if matrix P is transitive, i.e. pik ≤ pki if pij ≤ pji and pjk ≤ pkj, i ≠ j ≠ k = 1, ..., n 
(this means all initial rankings are consistent), then Dleast = ( , )D β Λ  and Dleast is an accessible 
value. An inverse proposition is also valid. Additionally evident that Dleast does not depend on 
a transposition of profile matrix P rows and columns. 



In view of Condorcet's Paradox the equality Dleast = ( , )D β Λ  is not always satisfied and its 
validity can be established only after determination of β. If matrix P is intransitive, 
then ( , )D β Λ  > Dleast and Dleast becomes inaccessible. 

 
3.2. Search tree 

 
The algorithm investigates a tree-structured solutions space (see Fig. 3). Each node of the 

solution tree is in one-to-one correspondence with a set S = {s1, s2, …, sk}, which is consid-
ered to be a representative (or leader) of all solutions containing it as a leading part. The tree 
root is leader of absolutely all feasible solutions and for it S = ∅. At the next (first) tree level 
there are n leaders of cardinality 1. Each of the leaders has n – 1 successors of cardinality 2 at 
the second level. Thus, each of k-th level leaders has n – k successors of cardinality |S| = k + 1,  
k = 0, …, n – 1. If |S| < n –1 then an appropriate solution S is to be called current partial solu-
tion. Given |S| = n –1 the set S is to be a complete solution as, in this case, it defines an order 
of all elements of A. 

A leader is built up of elements of Nn = {1, 2, ..., n}, hence, for any leader S there exists its 
complement S = T = {t1, t2, …, tk–n} = Nn \ S containing elements of Nn which are not in-
cluded into S. Notice that elements in T are always arranged in a lexicographical order. 

Each leader S is built up by means of concatenation of its predecessor and first in order 
element tl of T, i.e. S = {s1, …, sk–1, sk = tl}, and at the same time tl is removed from T. For ex-
ample, let n = 6 then if at the search tree level k = 3 the leader S = {2, 1, 3} and T = {4, 5, 6} 
then at the next, fourth, level S = {2, 1, 3, 4} and T = {5, 6}. 
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Fig. 3. Search tree. 
 

3.3. Leader promise check 
 
Each leader (partial solution) has an appropriate estimate Dlow of a distance from profile Λ 

to the optimal linear order β. Let us call this a low bound Dlow. The minimal value of a dis-
tance function for complete solutions generated to the moment is termed an upper bound Du. 

Leader S strictly defines a position of the matrix P rows and columns with indexes s1, …, 
sk–1. Corresponding sum of elements of upper triangle submatrix of the matrix P is  
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Taking into account an expansion of the leader due to concatenation with element tl gives 
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Finally, for the rest of matrix defined by elements of T, we can use the same principle as 

for determination of the least distance (10). Then we have 
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In the example in Fig. 4 D = 51, De = 51 + 6 = 57, Dlow = 57 + 4 = 61. 
A leader is considered to be promising in case the condition low uD D<  is satisfied. If 

low uD D≥  (notice that due to (13) Dlow is the least value for the given leader S) then it is clear 
that all solutions including this leader are hopeless, i.e. cannot be optimal. 
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Fig. 4. Towards calculation of a low bound. 
 

3.4. The algorithm 
 

The algorithm (see Fig. 5) contains only two stages:  
• initialization, where for the given matrix P the parameter Dleast is calculated and all neces-

sary variables acquire initial values, and 
• call of recursive procedure LEADER (k, D) which accepts two parameters, k and D, where 

k is a number of the search tree level and D is a low bound component defined by a fixed 
order of leader elements as in formula (11). Initial values of the parameters are as follows: 
k = 1 и D = 0. 
Procedure LEADER (k, D) contains the main cycle by l, where l is a leader number at k-th 

level. At each cycle step the current partial solution in form of leader S is generated. A new 
leader S every time defines new position of the matrix P rows and columns. For it De

 and Dlow 
are calculated. If Dlow < Du and k < n – 1 then the procedure ( 1, )eLEADER k D+  is called in 
order to check the next level of search tree. It this way branching is realized. If Dlow < Du and 
the solution is complete then it is memorized as a pair β = S and Du

 = Dlow. If Dlow ≥ Du then 
the corresponding leader and all its successors are considered to be hopeless and they are 
pruned. Then we continue to see if any other incomplete solutions might feasibly lead to a 
better complete solution. 

The search is continued until all hopeless solutions will be pruned. The algorithm is an ex-
act one as it checks all the feasible incomplete solutions. 

Solutions of the algorithm for our example profile (1) are reduced to Table 1. For this par-
ticular problem we have β = {a4 f a2 f a1 f a3 f a6 f a5}, Dleast = 55, Du = 59, i.e. the initial 
preference rankings are inconsistent and the profile matrix is non-transitive. The number of 
partial solutions (nodes of the search tree) for this example is 71. 
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Fig. 5. Algorithm for consensus relation determination. 
 
 

4. CONSENSUS RELATION UNCERTAINTY ASSESSMENT 
 

Now let us take into account the fact that there always exists some uncertainty in matrix P 
definition as object rankings may be erroneous by different reasons, both subjective and ob-
jective. This section is mainly based on ideas from [12]. 

 
4.1. Radius of stability 

 
Let P∈ Zn and in the space Zn a norm is defined. 
If p11, …, pnn are given with uncertainty not exceeding ε, and uncertainties in elements 

definition are independent, then by decision of the problem over P we would like to believe 
that it is solved over any matrix Q belonging to a sphere Sε(P) of a radius ε with center in P, 
that is 
 Sε(P) = {Q | Q ∈ Zn, ||Q|| < ε}, (14) 
 
where ||Q|| is the norm of Q. 

This belief is based on an assumption that the solution is correct. However, in real situation  
- pij are always given with limited accuracy and 
- in fact, there exists some particular P′, about which it is only known that P′ ∈ Sε(P).  
It should be noticed that P′ by no means always coincides with P. Indeed, for any ε > 0 one 

can give an example (see section 3) of P such that for some P′ ∈ Sε(P) sets of optimal solu-
tions on P and on P′ are not intersected.  

In this situation, having solved the problem on P, we will know nothing about the problem 
solution on really existing matrix P′. To resolve the challenge, it seems to be reasonable to 
have an algorithm that by P gives out ρ(P) (which will be called radius of stability) such that 
the problem solution on P is also a solution on any P′∈Sρ(P). Thus, ρ(P) defines the maximal 
admissible error in assigning numerical problem parameters. Then the problem can be consid-
ered to be correctly solved under the condition ε < ρ(P), and, otherwise, the initial numerical 



data need to be defined more exactly. The problem solution without the revision would be 
meaningless. 

Let Β(P) be a set of indexes of optimal solutions of some problem on P. Denote the prob-
lem through ZP. If Β(P) includes all feasible solutions, then we suppose, by definition, that 
ρ(P) = 0. Otherwise, it can be easily shown that ρ(P) > 0. 

 
Table 1. Solutions of the algorithm. 

Step S T Dlow uD>=<  Decisions and comments 
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3 
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21 
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... 
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65 
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2 
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2,1,3,4,5 
2,1,3,4,6 
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4,2,5 
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2,3,4,5,6 
3,4,5,6 
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3,5,6 
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1,3,4,5,6 
3,4,5,6 
4,5,6 
5,6 
6 
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… 
6 
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3,5 
1,5,6 
1,3,6 
1,3,5 
1,2,5,6 
1,2,3,6 
1,2,3,5 
1,2,3,4,6 
1,2,3,4,5 
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Du = ∞, Dleast = 55 
branching 
branching 
branching 
branching 
the complete solution is {1,2,3,4,5,6}, 
Du

 = 65 
the complete solution is {1,2,3,4,6,5}, 
Du = 63 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
branching 
branching 
branching 
branching 
branching 
the complete solution is {2,1,3,4,6,5}, 
Du = 61 
pruning 
… 
pruning 
the complete solution is {4,2,1,3,6,5}, 
Du = 59 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning 
pruning; no unchecked uncomplete 
solutions exist, the last complete solu-
tion is optimal 

 
Let as consider transition from P to P ⊕ Q, where Q < ε and ⊕ is the operation of combin-

ing matrices P and Q. If at any such transition no non-optimal on P solution becomes optimal 
on P ⊕ Q (i.e. the gap between optimal and non-optimal solutions remains), then P is ε-
stable. This condition can be written as follows: 
 
 Β(P ⊕ Q) ⊆ Β(P). (15) 

 
Now let ρ(P) = sup ε where supremum is taken by all ε > 0, for which ZP is stable. 



Under  ρ(P) = 0 the sphere Sρ(P) degenerates to a point. Otherwise, solution of all ZQ under 
Q∈ Sρ(P) in view of (15) necessarily is among solutions of the problem ZP. 
 

4.2. Examples 
 
In this section we illustrate the above statements with examples. All of the examples  are  

produced for case n = 4. This value of n allows to demonstrate meaningful instances while 
still keeping a satisfactory level of obviousness. The corresponding space of 75 weak orders 
has been shown in Fig. 1 and its 2D representation is shown in Fig. 6.  Every vertex in this 
diagram corresponds to one possible ranking (they are represented by indexes i of objects ai, 
and strict order symbols f are omitted, i.e. {1234} ≡ {1f2f3f4} ≡ {a1fa2fa3fa4} or 
{1~324} ≡ {1~3f2f4} ≡ {a1~a3fa2fa4}, and so on). Strict orderings in this space forms the 
solution space Π of the problem (9). The space is closed but in order to have the possibility to 
represent it on a plane we break some vertices into two  with the same designation (a copy of 
each of the elements is white and elements of all corresponding pairs are connected with 
dashed line). Each edge has a number indicating the distance d(λk, λl) between corresponding 
two rankings. The central vertex of each hexagon in the space is connected to the element 
{1~2~3~4} with the distance equal to 3. 
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Fig. 6. Two-dimensional representation of the space of all possible weak orders for n = 4 (compare with Fig. 1). 

 
Example of stable solution. Let a preference profile be given as follows: λ1: 1342; 

λ2: 3~421; λ3: 4312; λ4: 21~43; λ5: 2413 (see Fig. 6). The profile matrix is 



1

0 6 4 7
4 0 6 6

[ ]
6 4 0 7
3 4 3 0

ijp

 
 
 =
 
 
 

. 

The B&B algorithm gives the solution β1: 4132, D(β1, Λ1) = 24.  
Now we change the object order in the ranking λ4. Let it be 12~43. In this case the profile 

matrix is 

2

0 4 4 6
6 0 6 7

[ ]
6 4 0 7
4 3 3 0

ijp

 
 
 =
 
 
 

. 

The solution β2 is the same: 4132, but D(β2, Λ2) = 22. It means that, in this case, the profile 
matrix allows to have some uncertainty in its elements. 

 
Examples of non-intersected solutions. The solutions for individual problems are reduced 

in Table 2. The initial preference profile for all of them is Λ1. An individual problem is ob-
tained by a small change in one of the five rankings; they are in the first column of Table 2. 

It can be seen from the examples that sets of optimal solutions on P and on P3, P4, …, P7 
are not intersected.  

 
Table 2.  Examples of non-intersected solutions.          

Ranking 
changed λ1: 3142 λ2: 1~324 λ3: 3412 λ2: 2~341 λ1: 3412 

Profile 
matrix 

0 6 6 7
4 0 6 6
4 4 0 7
3 4 3 0

 
 
 
  

 
0 4 3 5
6 0 6 6
7 4 0 6
5 4 4 0

 
 
 
  

 
0 6 4 7
4 0 6 6
6 4 0 5
3 4 5 0

 
 
 
  

 
0 6 4 7
4 0 5 6
6 5 0 6
3 6 4 0

 
 
 
  

 
0 6 6 9
4 0 6 6
4 4 0 7
1 4 3 0

 
 
 
  

 

Optimal 
solution 

β3: 4321 
D(β3, Λ3) = 22 

β4: 1432 
D(β4, Λ4) = 24 

β5: 3421 
D(β5, Λ5) = 26 

β6: 2413 
D(β6, Λ6) = 24 

β7: 4312 
D(β7, Λ7) = 22 

 
Let us fix Λ (and, consequently, P) and consider the matrix X∈Zn. Denote D(βk, Λ) 

through Dk(P). For an arbitrary pair of solutions βk and βl, Dk(P) < Dl(P), one can state the 
following problem: 
 
 ||X|| → min, Dk(P ⊕ X) ≥ Dl(P ⊕ X). (16) 

 
Consideration of the problem (16) can allow to obtain a particular formula for the radius of 

stability and this is a direction of future investigations on the topic. The approach described 
would allow to assign a definite level of uncertainty to ordinal measurement result. This situa-
tion is typical for quantitative physical measurements. The similar possibility implemented for 
ordinal measurement would considerably increase the level of their reliability. 
 
 

5. CONCLUSION 
 
One can argue that initial rankings are subjective as they are obtained without the use of a 

measuring instrument. The possible answer to this point may be justified with the help of a 
substitution of m individuals by m sensors in our problem description (see section 2.1). Then 



the problem of consensus ranking determination turns into one of sensor data fusion prob-
lems. An interesting example concerning this is given in [13] which illustrates a consensus 
ranking characterizing the level of threat of n targets indicated on the radar screen of a fighter 
aircraft. There are analysed data from a set of m sensors measuring the size, shape and speed 
of approach and range to the target. In this case, the sensors (as measuring instruments) give 
out objective information at the same time voting in the same manner as subjective people. 
Here the profile matrix describing the sensor "opinions" seems to have no distinction from 
one produced by individuals. And  Condorcet's paradox should be getting over as earlier, that 
is by means of solving the problem (9). Thus, the problem is a subject invariant. 

Another objection can be that the rankings are non-empirical as they are obtained of a 
thought experiment and reflect unobservable relations. To comment this position let us re-
member how reliable are our assumptions when measuring in ratio scale. We believe that the 
attribute we measure is directly connected to a property under investigation, we think that 
measurement errors are distributed in accordance to a known law, we rely on SI units and so 
on. However, our security is illusory because the measured attribute can be misleading, the 
error distribution is completely out of our pre-diction, SI units partition into fundamental and 
derived ones is only a convention and the measurement instrument is not calibrated as be-
lieved, etc. Thus the level of our confidence to classical measurement is arguable. So do rank-
ings, clearly to a more considerable extent. 

Finally our conclusion is that consensus rankings as they were described above can be 
treated as ordinal scale measurement results with a wide area of application in practical me-
trology , quality management and control. 
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